

 Thousand Island

 v1.1.0

 [image: Logo]

 Table of contents

 	Modules

 	ThousandIsland

 	ThousandIsland.Handler

 	ThousandIsland.Logger

 	ThousandIsland.Socket

 	ThousandIsland.Telemetry

 	ThousandIsland.Transport

 	ThousandIsland.Transports.SSL

 	ThousandIsland.Transports.TCP

ThousandIsland

Thousand Island is a modern, pure Elixir socket server, inspired heavily by
ranch. It aims to be easy to understand
& reason about, while also being at least as stable and performant as alternatives.
Thousand Island is implemented as a supervision tree which is intended to be hosted
inside a host application, often as a dependency embedded within a higher-level
protocol library such as Bandit. Aside from
supervising the Thousand Island process tree, applications interact with Thousand
Island primarily via the ThousandIsland.Handler behaviour.

 Handlers

The ThousandIsland.Handler behaviour defines the interface that Thousand Island
uses to pass ThousandIsland.Sockets up to the application level; together they
form the primary interface that most applications will have with Thousand Island.
Thousand Island comes with a few simple protocol handlers to serve as examples;
these can be found in the examples
folder of this project. A simple implementation would look like this:
defmodule Echo do
 use ThousandIsland.Handler

 @impl ThousandIsland.Handler
 def handle_data(data, socket, state) do
 ThousandIsland.Socket.send(socket, data)
 {:continue, state}
 end
end

{:ok, pid} = ThousandIsland.start_link(port: 1234, handler_module: Echo)
For more information, please consult the ThousandIsland.Handler documentation.

 Starting a Thousand Island Server

A typical use of ThousandIsland might look like the following:
defmodule MyApp.Supervisor do
 # ... other Supervisor boilerplate

 def init(config) do
 children = [
 # ... other children as dictated by your app
 {ThousandIsland, port: 1234, handler_module: MyApp.ConnectionHandler}
]

 Supervisor.init(children, strategy: :one_for_one)
 end
end
You can also start servers directly via the start_link/1 function:
{:ok, pid} = ThousandIsland.start_link(port: 1234, handler_module: MyApp.ConnectionHandler)

 Configuration

A number of options are defined when starting a server. The complete list is
defined by the ThousandIsland.options/0 type.

 Connection Draining & Shutdown

ThousandIsland instances are just a process tree consisting of standard
Supervisor, GenServer and Task modules, and so the usual rules regarding
shutdown and shutdown timeouts apply. Immediately upon beginning the shutdown
sequence the ThousandIsland.ShutdownListener process will cause the listening
socket to shut down, which in turn will cause all of the
ThousandIsland.Acceptor processes to shut down as well. At this point all that
is left in the supervision tree are several layers of Supervisors and whatever
Handler processes were in progress when shutdown was initiated. At this
point, standard Supervisor shutdown timeout semantics give existing
connections a chance to finish things up. Handler processes trap exit, so
they continue running beyond shutdown until they either complete or are
:brutal_killed after their shutdown timeout expires.

 Logging & Telemetry

As a low-level library, Thousand Island purposely does not do any inline
logging of any kind. The ThousandIsland.Logger module defines a number of
functions to aid in tracing connections at various log levels, and such logging
can be dynamically enabled and disabled against an already running server. This
logging is backed by telemetry events internally.
Thousand Island emits a rich set of telemetry events including spans for each
server, acceptor process, and individual client connection. These telemetry
events are documented in the ThousandIsland.Telemetry module.

 Summary

 Types

 options()

 Possible options to configure a server. Valid option values are as follows

 transport_module()

 A module implementing ThousandIsland.Transport behaviour

 transport_options()

 A keyword list of options to be passed to the transport module's listen/2 function

 Functions

 connection_pids(supervisor)

 Gets a list of active connection processes. This is inherently a bit of a leaky notion in the
face of concurrency, as there may be connections coming and going during the period that this
function takes to run. Callers should account for the possibility that new connections may have
been made since / during this call, and that processes returned by this call may have since
completed. The order that connection processes are returned in is not specified

 listener_info(supervisor)

 Returns information about the address and port that the server is listening on

 resume(supervisor)

 Resume a suspended server. This will reopen the listening port, and resume the acceptance of new
connections

 start_link(opts \\ [])

 Starts a ThousandIsland instance with the given options. Returns a pid
that can be used to further manipulate the server via other functions defined on
this module in the case of success, or an error tuple describing the reason the
server was unable to start in the case of failure.

 stop(supervisor, connection_wait \\ 15000)

 Synchronously stops the given server, waiting up to the given number of milliseconds
for existing connections to finish up. Immediately upon calling this function,
the server stops listening for new connections, and then proceeds to wait until
either all existing connections have completed or the specified timeout has
elapsed.

 suspend(supervisor)

 Suspend the server. This will close the listening port, and will stop the acceptance of new
connections. Existing connections will stay connected and will continue to be processed.

 Types

 Link to this type

 options()

 View Source

 @type options() :: [
 handler_module: module(),
 handler_options: term(),
 genserver_options: GenServer.options(),
 port: :inet.port_number(),
 transport_module: module(),
 transport_options: transport_options(),
 num_acceptors: pos_integer(),
 num_connections: non_neg_integer() | :infinity,
 max_connections_retry_count: non_neg_integer(),
 max_connections_retry_wait: timeout(),
 read_timeout: timeout(),
 shutdown_timeout: timeout(),
 silent_terminate_on_error: boolean()
]

Possible options to configure a server. Valid option values are as follows:
	handler_module: The name of the module used to handle connections to this server.
The module is expected to implement the ThousandIsland.Handler behaviour. Required
	handler_options: A term which is passed as the initial state value to
ThousandIsland.Handler.handle_connection/2 calls. Optional, defaulting to nil.
	genserver_options: A term which is passed as the value to the handler module's
underlying GenServer.start_link/3 call. Optional, defaulting to []
	port: The TCP port number to listen on. If not specified this defaults to 4000.
If a port number of 0 is given, the server will dynamically assign a port number
which can then be obtained via ThousandIsland.listener_info/1 or
ThousandIsland.Socket.sockname/1
	transport_module: The name of the module which provides basic socket functions.
Thousand Island provides ThousandIsland.Transports.TCP and ThousandIsland.Transports.SSL,
which provide clear and TLS encrypted TCP sockets respectively. If not specified this
defaults to ThousandIsland.Transports.TCP
	transport_options: A keyword list of options to be passed to the transport module's
ThousandIsland.Transport.listen/2 function. Valid values depend on the transport
module specified in transport_module and can be found in the documentation for the
ThousandIsland.Transports.TCP and ThousandIsland.Transports.SSL modules. Any options
in terms of interfaces to listen to / certificates and keys to use for SSL connections
will be passed in via this option
	num_acceptors: The number of acceptor processes to run. Defaults to 100
	num_connections: The maximum number of concurrent connections which each acceptor will
accept before throttling connections. Connections will be throttled by having the acceptor
process wait max_connections_retry_wait milliseconds, up to max_connections_retry_count
times for existing connections to terminate & make room for this new connection. If there is
still no room for this new connection after this interval, the acceptor will close the client
connection and emit a [:thousand_island, :acceptor, :spawn_error] telemetry event. This number
is expressed per-acceptor, so the total number of maximum connections for a Thousand Island
server is num_acceptors * num_connections. Defaults to 16_384
	max_connections_retry_wait: How long to wait during each iteration as described in
num_connectors above, in milliseconds. Defaults to 1000
	max_connections_retry_count: How many iterations to wait as described in num_connectors
above. Defaults to 5
	read_timeout: How long to wait for client data before closing the connection, in
milliseconds. Defaults to 60_000
	shutdown_timeout: How long to wait for existing client connections to complete before
forcibly shutting those connections down at server shutdown time, in milliseconds. Defaults to
15_000. May also be :infinity or :brutal_kill as described in the Supervisor
documentation
	silent_terminate_on_error: Whether to silently ignore errors returned by the handler or to
surface them to the runtime via an abnormal termination result. This only applies to errors
returned via {:error, reason, state} responses; exceptions raised within a handler are always
logged regardless of this value. Note also that telemetry events will always be sent for errors
regardless of this value. Defaults to false

 Link to this type

 transport_module()

 View Source

 @type transport_module() ::
 ThousandIsland.Transports.TCP | ThousandIsland.Transports.SSL

A module implementing ThousandIsland.Transport behaviour

 Link to this type

 transport_options()

 View Source

 @type transport_options() ::
 ThousandIsland.Transports.TCP.options()
 | ThousandIsland.Transports.SSL.options()

A keyword list of options to be passed to the transport module's listen/2 function

 Functions

 Link to this function

 connection_pids(supervisor)

 View Source

 @spec connection_pids(Supervisor.supervisor()) :: {:ok, [pid()]} | :error

Gets a list of active connection processes. This is inherently a bit of a leaky notion in the
face of concurrency, as there may be connections coming and going during the period that this
function takes to run. Callers should account for the possibility that new connections may have
been made since / during this call, and that processes returned by this call may have since
completed. The order that connection processes are returned in is not specified

 Link to this function

 listener_info(supervisor)

 View Source

 @spec listener_info(Supervisor.supervisor()) ::
 {:ok, ThousandIsland.Transport.socket_info()} | :error

Returns information about the address and port that the server is listening on

 Link to this function

 resume(supervisor)

 View Source

Resume a suspended server. This will reopen the listening port, and resume the acceptance of new
connections

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link(options()) :: Supervisor.on_start()

Starts a ThousandIsland instance with the given options. Returns a pid
that can be used to further manipulate the server via other functions defined on
this module in the case of success, or an error tuple describing the reason the
server was unable to start in the case of failure.

 Link to this function

 stop(supervisor, connection_wait \\ 15000)

 View Source

 @spec stop(Supervisor.supervisor(), timeout()) :: :ok

Synchronously stops the given server, waiting up to the given number of milliseconds
for existing connections to finish up. Immediately upon calling this function,
the server stops listening for new connections, and then proceeds to wait until
either all existing connections have completed or the specified timeout has
elapsed.

 Link to this function

 suspend(supervisor)

 View Source

Suspend the server. This will close the listening port, and will stop the acceptance of new
connections. Existing connections will stay connected and will continue to be processed.
The server can later be resumed by calling resume/1, or shut down via standard supervision
patterns.
If this function returns :error, it is unlikely that the server is in a useable state
Note that if you do not explicitly set a port (or if you set port to 0), then the server will
bind to a different port when you resume it. This new port can be obtained as usual via the
listener_info/1 function. This is not a concern if you explicitly set a port value when first
instantiating the server

ThousandIsland.Handler behaviour

ThousandIsland.Handler defines the behaviour required of the application layer of a Thousand Island server. When starting a
Thousand Island server, you must pass the name of a module implementing this behaviour as the handler_module parameter.
Thousand Island will then use the specified module to handle each connection that is made to the server.
The lifecycle of a Handler instance is as follows:
	After a client connection to a Thousand Island server is made, Thousand Island will complete the initial setup of the
connection (performing a TLS handshake, for example), and then call handle_connection/2.

	A handler implementation may choose to process a client connection within the handle_connection/2 callback by
calling functions against the passed ThousandIsland.Socket. In many cases, this may be all that may be required of
an implementation & the value {:close, state} can be returned which will cause Thousand Island to close the connection
to the client.

	In cases where the server wishes to keep the connection open and wait for subsequent requests from the client on the
same socket, it may elect to return {:continue, state}. This will cause Thousand Island to wait for client data
asynchronously; handle_data/3 will be invoked when the client sends more data.

	In the meantime, the process which is hosting connection is idle & able to receive messages sent from elsewhere in your
application as needed. The implementation included in the use ThousandIsland.Handler macro uses a GenServer structure,
so you may implement such behaviour via standard GenServer patterns. Note that in these cases that state is provided (and
must be returned) in a {socket, state} format, where the second tuple is the same state value that is passed to the various handle_* callbacks
defined on this behaviour. It also critical to maintain the socket's read_timeout value by
ensuring the relevant timeout value is returned as your callback's final argument. Both of these
concerns are illustrated in the following example:
 defmodule ExampleHandler do
 use ThousandIsland.Handler

 # ...handle_data and other Handler callbacks

 def handle_cast(msg, from, {socket, state}) do
 # Do whatever you'd like with msg & from
 {:reply, :ok, {socket, state}, socket.read_timeout}
 end

 def handle_cast(msg, {socket, state}) do
 # Do whatever you'd like with msg
 {:noreply, {socket, state}, socket.read_timeout}
 end

 def handle_info(msg, {socket, state}) do
 # Do whatever you'd like with msg
 {:noreply, {socket, state}, socket.read_timeout}
 end
 end

It is fully supported to intermix synchronous ThousandIsland.Socket.recv calls with async return values from handle_connection/2
and handle_data/3 callbacks.
Example
A simple example of a Hello World server is as follows:
defmodule HelloWorld do
 use ThousandIsland.Handler

 @impl ThousandIsland.Handler
 def handle_connection(socket, state) do
 ThousandIsland.Socket.send(socket, "Hello, World")
 {:close, state}
 end
end
Another example of a server that echoes back all data sent to it is as follows:
defmodule Echo do
 use ThousandIsland.Handler

 @impl ThousandIsland.Handler
 def handle_data(data, socket, state) do
 ThousandIsland.Socket.send(socket, data)
 {:continue, state}
 end
end
Note that in this example there is no handle_connection/2 callback defined. The default implementation of this
callback will simply return {:continue, state}, which is appropriate for cases where the client is the first
party to communicate.
Another example of a server which can send and receive messages asynchronously is as follows:
defmodule Messenger do
 use ThousandIsland.Handler

 @impl ThousandIsland.Handler
 def handle_data(msg, _socket, state) do
 IO.puts(msg)
 {:continue, state}
 end

 def handle_info({:send, msg}, {socket, state}) do
 ThousandIsland.Socket.send(socket, msg)
 {:noreply, {socket, state}, socket.read_timeout}
 end
end
Note that in this example we make use of the fact that the handler process is really just a GenServer to send it messages
which are able to make use of the underlying socket. This allows for bidirectional sending and receiving of messages in
an asynchronous manner.
You can pass options to the default handler underlying GenServer by passing a genserver_options key to ThousandIsland.start_link/1
containing GenServer.options/0 to be passed to the last argument of GenServer.start_link/3.
Please note that you should not pass the name GenServer.option/0. If you need to register handler processes for
later lookup and use, you should perform process registration in handle_connection/2, ensuring the handler process is
registered only after the underlying connection is established and you have access to the connection socket and metadata
via ThousandIsland.Socket.peername/1.
For example, using a custom process registry via Registry:

defmodule Messenger do
 use ThousandIsland.Handler

 @impl ThousandIsland.Handler
 def handle_connection(socket, state) do
 {:ok, {ip, port}} = ThousandIsland.Socket.peername(socket)
 {:ok, _pid} = Registry.register(MessengerRegistry, {state[:my_key], address}, nil)
 {:continue, state}
 end

 @impl ThousandIsland.Handler
 def handle_data(data, socket, state) do
 ThousandIsland.Socket.send(socket, data)
 {:continue, state}
 end
end
This example assumes you have started a Registry and registered it under the name MessengerRegistry.
When Handler Isn't Enough
The use ThousandIsland.Handler implementation should be flexible enough to power just about any handler, however if
this should not be the case for you, there is an escape hatch available. If you require more flexibility than the
ThousandIsland.Handler behaviour provides, you are free to specify any module which implements start_link/1 as the
handler_module parameter. The process of getting from this new process to a ready-to-use socket is somewhat
delicate, however. The steps required are as follows:
	Thousand Island calls start_link/1 on the configured handler_module, passing in a tuple
consisting of the configured handler and genserver opts. This function is expected to return a
conventional GenServer.on_start() style tuple. Note that this newly created process is not
passed the connection socket immediately.
	The socket will be passed to the new process via a message of the form
{:thousand_island_ready, socket, server_config, acceptor_span, start_time}.
	Once the process receives the socket, it must call ThousandIsland.Socket.handshake/1 with the socket as the sole
argument in order to finalize the setup of the socket.
	The socket is now ready to use.

In addition to this process, there are several other considerations to be aware of:
	The underlying socket is closed automatically when the handler process ends.

	Handler processes should have a restart strategy of :temporary to ensure that Thousand Island does not attempt to
restart crashed handlers.

	Handler processes should trap exit if possible so that existing connections can be given a chance to cleanly shut
down when shutting down a Thousand Island server instance.

	Some of the :connection family of telemetry span events are emitted by the
ThousandIsland.Handler implementation. If you use your own implementation in its place it is
likely that such spans will not behave as expected.

 Summary

 Types

 handler_result()

 The value returned by handle_connection/2 and handle_data/3

 Callbacks

 handle_close(socket, state)

 This callback is called when the underlying socket is closed by the remote end; it should perform any cleanup required
as it is the last callback called before the process backing this connection is terminated. The underlying socket
has already been closed by the time this callback is called. The return value is ignored.

 handle_connection(socket, state)

 This callback is called shortly after a client connection has been made, immediately after the socket handshake process has
completed. It is called with the server's configured handler_options value as initial state. Handlers may choose to
interact synchronously with the socket in this callback via calls to various ThousandIsland.Socket functions.

 handle_data(data, socket, state)

 This callback is called whenever client data is received after handle_connection/2 or handle_data/3 have returned an
{:continue, state} tuple. The data received is passed as the first argument, and handlers may choose to interact
synchronously with the socket in this callback via calls to various ThousandIsland.Socket functions.

 handle_error(reason, socket, state)

 This callback is called when the underlying socket encounters an error; it should perform any cleanup required
as it is the last callback called before the process backing this connection is terminated. The underlying socket
has already been closed by the time this callback is called. The return value is ignored.

 handle_shutdown(socket, state)

 This callback is called when the server process itself is being shut down; it should perform any cleanup required
as it is the last callback called before the process backing this connection is terminated. The underlying socket
has NOT been closed by the time this callback is called. The return value is ignored.

 handle_timeout(socket, state)

 This callback is called when a handler process has gone more than timeout ms without receiving
either remote data or a local message. The value used for timeout defaults to the
read_timeout value specified at server startup, and may be overridden on a one-shot or
persistent basis based on values returned from handle_connection/2 or handle_data/3
calls. Note that it is NOT called on explicit ThousandIsland.Socket.recv/3 calls as they have
their own timeout semantics. The underlying socket has NOT been closed by the time this callback
is called. The return value is ignored.

 Types

 Link to this type

 handler_result()

 View Source

 @type handler_result() ::
 {:continue, state :: term()}
 | {:continue, state :: term(), timeout()}
 | {:continue, state :: term(), {:persistent, timeout()}}
 | {:close, state :: term()}
 | {:error, term(), state :: term()}

The value returned by handle_connection/2 and handle_data/3

 Callbacks

 Link to this callback

 handle_close(socket, state)

 View Source

 (optional)

 @callback handle_close(socket :: ThousandIsland.Socket.t(), state :: term()) :: term()

This callback is called when the underlying socket is closed by the remote end; it should perform any cleanup required
as it is the last callback called before the process backing this connection is terminated. The underlying socket
has already been closed by the time this callback is called. The return value is ignored.
This callback is not called if the connection is explicitly closed via ThousandIsland.Socket.close/1, however it
will be called in cases where handle_connection/2 or handle_data/3 return a {:close, state} tuple.

 Link to this callback

 handle_connection(socket, state)

 View Source

 (optional)

 @callback handle_connection(socket :: ThousandIsland.Socket.t(), state :: term()) ::
 handler_result()

This callback is called shortly after a client connection has been made, immediately after the socket handshake process has
completed. It is called with the server's configured handler_options value as initial state. Handlers may choose to
interact synchronously with the socket in this callback via calls to various ThousandIsland.Socket functions.
The value returned by this callback causes Thousand Island to proceed in one of several ways:
	Returning {:close, state} will cause Thousand Island to close the socket & call the handle_close/2 callback to
allow final cleanup to be done.
	Returning {:continue, state} will cause Thousand Island to switch the socket to an asynchronous mode. When the
client subsequently sends data (or if there is already unread data waiting from the client), Thousand Island will call
handle_data/3 to allow this data to be processed.
	Returning {:continue, state, timeout} is identical to the previous case with the
addition of a timeout. If timeout milliseconds passes with no data being received or messages
being sent to the process, the socket will be closed and handle_timeout/2 will be called.
Note that this timeout is not persistent; it applies only to the interval until the next message
is received. In order to set a persistent timeout for all future messages (essentially
overwriting the value of read_timeout that was set at server startup), a value of
{:persistent, timeout} may be returned.
	Returning {:error, reason, state} will cause Thousand Island to close the socket & call the handle_error/3 callback to
allow final cleanup to be done.

 Link to this callback

 handle_data(data, socket, state)

 View Source

 (optional)

 @callback handle_data(
 data :: binary(),
 socket :: ThousandIsland.Socket.t(),
 state :: term()
) ::
 handler_result()

This callback is called whenever client data is received after handle_connection/2 or handle_data/3 have returned an
{:continue, state} tuple. The data received is passed as the first argument, and handlers may choose to interact
synchronously with the socket in this callback via calls to various ThousandIsland.Socket functions.
The value returned by this callback causes Thousand Island to proceed in one of several ways:
	Returning {:close, state} will cause Thousand Island to close the socket & call the handle_close/2 callback to
allow final cleanup to be done.
	Returning {:continue, state} will cause Thousand Island to switch the socket to an asynchronous mode. When the
client subsequently sends data (or if there is already unread data waiting from the client), Thousand Island will call
handle_data/3 to allow this data to be processed.
	Returning {:continue, state, timeout} is identical to the previous case with the
addition of a timeout. If timeout milliseconds passes with no data being received or messages
being sent to the process, the socket will be closed and handle_timeout/2 will be called.
Note that this timeout is not persistent; it applies only to the interval until the next message
is received. In order to set a persistent timeout for all future messages (essentially
overwriting the value of read_timeout that was set at server startup), a value of
{:persistent, timeout} may be returned.
	Returning {:error, reason, state} will cause Thousand Island to close the socket & call the handle_error/3 callback to
allow final cleanup to be done.

 Link to this callback

 handle_error(reason, socket, state)

 View Source

 (optional)

 @callback handle_error(
 reason :: any(),
 socket :: ThousandIsland.Socket.t(),
 state :: term()
) :: term()

This callback is called when the underlying socket encounters an error; it should perform any cleanup required
as it is the last callback called before the process backing this connection is terminated. The underlying socket
has already been closed by the time this callback is called. The return value is ignored.
In addition to socket level errors, this callback is also called in cases where handle_connection/2 or handle_data/3
return a {:error, reason, state} tuple, or when connection handshaking (typically TLS
negotiation) fails.

 Link to this callback

 handle_shutdown(socket, state)

 View Source

 (optional)

 @callback handle_shutdown(socket :: ThousandIsland.Socket.t(), state :: term()) :: term()

This callback is called when the server process itself is being shut down; it should perform any cleanup required
as it is the last callback called before the process backing this connection is terminated. The underlying socket
has NOT been closed by the time this callback is called. The return value is ignored.
This callback is only called when the shutdown reason is :normal, and is subject to the same caveats described
in GenServer.terminate/2.

 Link to this callback

 handle_timeout(socket, state)

 View Source

 (optional)

 @callback handle_timeout(socket :: ThousandIsland.Socket.t(), state :: term()) :: term()

This callback is called when a handler process has gone more than timeout ms without receiving
either remote data or a local message. The value used for timeout defaults to the
read_timeout value specified at server startup, and may be overridden on a one-shot or
persistent basis based on values returned from handle_connection/2 or handle_data/3
calls. Note that it is NOT called on explicit ThousandIsland.Socket.recv/3 calls as they have
their own timeout semantics. The underlying socket has NOT been closed by the time this callback
is called. The return value is ignored.

ThousandIsland.Logger

Logging conveniences for Thousand Island servers
Allows dynamically adding and altering the log level used to trace connections
within a Thousand Island server via the use of telemetry hooks. Should you wish
to do your own logging or tracking of these events, a complete list of the
telemetry events emitted by Thousand Island is described in the module
documentation for ThousandIsland.Telemetry.

 Summary

 Types

 log_level()

 Supported log levels

 Functions

 attach_logger(atom)

 Start logging Thousand Island at the specified log level. Valid values for log
level are :error, :info, :debug, and :trace. Enabling a given log
level implicitly enables all higher log levels as well.

 detach_logger(atom)

 Stop logging Thousand Island at the specified log level. Disabling a given log
level implicitly disables all lower log levels as well.

 Types

 Link to this type

 log_level()

 View Source

 @type log_level() :: :error | :info | :debug | :trace

Supported log levels

 Functions

 Link to this function

 attach_logger(atom)

 View Source

 @spec attach_logger(log_level()) :: :ok | {:error, :already_exists}

Start logging Thousand Island at the specified log level. Valid values for log
level are :error, :info, :debug, and :trace. Enabling a given log
level implicitly enables all higher log levels as well.

 Link to this function

 detach_logger(atom)

 View Source

 @spec detach_logger(log_level()) :: :ok | {:error, :not_found}

Stop logging Thousand Island at the specified log level. Disabling a given log
level implicitly disables all lower log levels as well.

ThousandIsland.Socket

Encapsulates a client connection's underlying socket, providing a facility to
read, write, and otherwise manipulate a connection from a client.

 Summary

 Types

 t()

 A reference to a socket along with metadata describing how to use it

 Functions

 close(socket)

 Closes the given socket. Note that a socket is automatically closed when the handler
process which owns it terminates

 getopts(socket, options)

 Gets the given flags on the socket

 getstat(socket)

 Returns statistics about the connection.

 handshake(socket)

 Handshakes the underlying socket if it is required (as in the case of SSL sockets, for example).

 negotiated_protocol(socket)

 Returns information about the protocol negotiated during transport handshaking (if any).

 peercert(socket)

 Returns information in the form of t:public_key.der_encoded() about the peer certificate of the socket.

 peername(socket)

 Returns information in the form of t:ThousandIsland.Transport.socket_info() about the remote end of the socket.

 recv(socket, length \\ 0, timeout \\ nil)

 Returns available bytes on the given socket. Up to length bytes will be
returned (0 can be passed in to get the next 'available' bytes, typically the
next packet). If insufficient bytes are available, the function can wait timeout
milliseconds for data to arrive.

 secure?(socket)

 Returns whether or not this protocol is secure.

 send(socket, data)

 Sends the given data (specified as a binary or an IO list) on the given socket.

 sendfile(socket, filename, offset, length)

 Sends the contents of the given file based on the provided offset & length

 setopts(socket, options)

 Sets the given flags on the socket

 shutdown(socket, way)

 Shuts down the socket in the given direction.

 sockname(socket)

 Returns information in the form of t:ThousandIsland.Transport.socket_info() about the local end of the socket.

 telemetry_span(socket)

 Returns the telemetry span representing the lifetime of this socket

 Types

 Link to this type

 t()

 View Source

 @type t() :: %ThousandIsland.Socket{
 read_timeout: timeout(),
 silent_terminate_on_error: boolean(),
 socket: ThousandIsland.Transport.socket(),
 span: ThousandIsland.Telemetry.t(),
 transport_module: module()
}

A reference to a socket along with metadata describing how to use it

 Functions

 Link to this function

 close(socket)

 View Source

 @spec close(t()) :: ThousandIsland.Transport.on_close()

Closes the given socket. Note that a socket is automatically closed when the handler
process which owns it terminates

 Link to this function

 getopts(socket, options)

 View Source

 @spec getopts(t(), ThousandIsland.Transport.socket_get_options()) ::
 ThousandIsland.Transport.on_getopts()

Gets the given flags on the socket
Errors are usually from :inet.posix(), however, SSL module defines return type as any()

 Link to this function

 getstat(socket)

 View Source

 @spec getstat(t()) :: ThousandIsland.Transport.socket_stats()

Returns statistics about the connection.

 Link to this function

 handshake(socket)

 View Source

 @spec handshake(t()) :: ThousandIsland.Transport.on_handshake()

Handshakes the underlying socket if it is required (as in the case of SSL sockets, for example).
This is normally called internally by ThousandIsland.Handler and does not need to be
called by implementations which are based on ThousandIsland.Handler

 Link to this function

 negotiated_protocol(socket)

 View Source

 @spec negotiated_protocol(t()) :: ThousandIsland.Transport.on_negotiated_protocol()

Returns information about the protocol negotiated during transport handshaking (if any).

 Link to this function

 peercert(socket)

 View Source

 @spec peercert(t()) :: ThousandIsland.Transport.on_peercert()

Returns information in the form of t:public_key.der_encoded() about the peer certificate of the socket.

 Link to this function

 peername(socket)

 View Source

 @spec peername(t()) :: ThousandIsland.Transport.on_peername()

Returns information in the form of t:ThousandIsland.Transport.socket_info() about the remote end of the socket.

 Link to this function

 recv(socket, length \\ 0, timeout \\ nil)

 View Source

 @spec recv(t(), non_neg_integer(), timeout() | nil) ::
 ThousandIsland.Transport.on_recv()

Returns available bytes on the given socket. Up to length bytes will be
returned (0 can be passed in to get the next 'available' bytes, typically the
next packet). If insufficient bytes are available, the function can wait timeout
milliseconds for data to arrive.

 Link to this function

 secure?(socket)

 View Source

 @spec secure?(t()) :: boolean()

Returns whether or not this protocol is secure.

 Link to this function

 send(socket, data)

 View Source

 @spec send(t(), iodata()) :: ThousandIsland.Transport.on_send()

Sends the given data (specified as a binary or an IO list) on the given socket.

 Link to this function

 sendfile(socket, filename, offset, length)

 View Source

 @spec sendfile(t(), String.t(), non_neg_integer(), non_neg_integer()) ::
 ThousandIsland.Transport.on_sendfile()

Sends the contents of the given file based on the provided offset & length

 Link to this function

 setopts(socket, options)

 View Source

 @spec setopts(t(), ThousandIsland.Transport.socket_set_options()) ::
 ThousandIsland.Transport.on_setopts()

Sets the given flags on the socket
Errors are usually from :inet.posix(), however, SSL module defines return type as any()

 Link to this function

 shutdown(socket, way)

 View Source

 @spec shutdown(t(), ThousandIsland.Transport.way()) ::
 ThousandIsland.Transport.on_shutdown()

Shuts down the socket in the given direction.

 Link to this function

 sockname(socket)

 View Source

 @spec sockname(t()) :: ThousandIsland.Transport.on_sockname()

Returns information in the form of t:ThousandIsland.Transport.socket_info() about the local end of the socket.

 Link to this function

 telemetry_span(socket)

 View Source

 @spec telemetry_span(t()) :: ThousandIsland.Telemetry.t()

Returns the telemetry span representing the lifetime of this socket

ThousandIsland.Telemetry

The following telemetry spans are emitted by thousand_island

 [:thousand_island, :listener, *]

Represents a Thousand Island server listening to a port
This span is started by the following event:
	[:thousand_island, :listener, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	local_address: The IP address that the listener is bound to
	local_port: The port that the listener is bound to
	transport_module: The transport module in use
	transport_options: Options passed to the transport module at startup

This span is ended by the following event:
	[:thousand_island, :listener, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	local_address: The IP address that the listener is bound to
	local_port: The port that the listener is bound to
	transport_module: The transport module in use
	transport_options: Options passed to the transport module at startup

 [:thousand_island, :acceptor, *]

Represents a Thousand Island acceptor process listening for connections
This span is started by the following event:
	[:thousand_island, :acceptor, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	parent_telemetry_span_context: The span context of the :listener which created this acceptor

This span is ended by the following event:
	[:thousand_island, :acceptor, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	connections: The number of client requests that the acceptor handled

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	parent_telemetry_span_context: The span context of the :listener which created this acceptor
	error: The error that caused the span to end, if it ended in error

The following events may be emitted within this span:
	[:thousand_island, :acceptor, :spawn_error]
 Thousand Island was unable to spawn a process to handle a connection. This occurs when too
 many connections are in progress; you may want to look at increasing the num_connections
 configuration parameter
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

 [:thousand_island, :connection, *]

Represents Thousand Island handling a specific client request
This span is started by the following event:
	[:thousand_island, :connection, :start]
 Represents the start of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	parent_telemetry_span_context: The span context of the :acceptor span which accepted
this connection
	remote_address: The IP address of the connected client
	remote_port: The port of the connected client

This span is ended by the following event:
	[:thousand_island, :connection, :stop]
 Represents the end of the span
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	duration: The span duration, in :native units
	send_oct: The number of octets sent on the connection
	send_cnt: The number of packets sent on the connection
	recv_oct: The number of octets received on the connection
	recv_cnt: The number of packets received on the connection

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span
	parent_telemetry_span_context: The span context of the :acceptor span which accepted
this connection
	remote_address: The IP address of the connected client
	remote_port: The port of the connected client
	error: The error that caused the span to end, if it ended in error

The following events may be emitted within this span:
	[:thousand_island, :connection, :ready]
 Thousand Island has completed setting up the client connection
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :async_recv]
 Thousand Island has asynchronously received data from the client
 This event contains the following measurements:
	data: The data received from the client

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :recv]
 Thousand Island has synchronously received data from the client
 This event contains the following measurements:
	data: The data received from the client

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :recv_error]
 Thousand Island encountered an error reading data from the client
 This event contains the following measurements:
	error: A description of the error

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :send]
 Thousand Island has sent data to the client
 This event contains the following measurements:
	data: The data sent to the client

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :send_error]
 Thousand Island encountered an error sending data to the client
 This event contains the following measurements:
	data: The data that was being sent to the client
	error: A description of the error

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :sendfile]
 Thousand Island has sent a file to the client
 This event contains the following measurements:
	filename: The filename containing data sent to the client
	offset: The offset (in bytes) within the file sending started from
	bytes_written: The number of bytes written

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :sendfile_error]
 Thousand Island encountered an error sending a file to the client
 This event contains the following measurements:
	filename: The filename containing data that was being sent to the client
	offset: The offset (in bytes) within the file where sending started from
	length: The number of bytes that were attempted to send
	error: A description of the error

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

	[:thousand_island, :connection, :socket_shutdown]
 Thousand Island has shutdown the client connection
 This event contains the following measurements:
	monotonic_time: The time of this event, in :native units
	way: The direction in which the socket was shut down

 This event contains the following metadata:
	telemetry_span_context: A unique identifier for this span

 Summary

 Types

 metadata()

 span_name()

 t()

 Functions

 monotonic_time()

 See System.monotonic_time/0.

 Types

 Link to this type

 metadata()

 View Source

 @type metadata() :: :telemetry.event_metadata()

 Link to this type

 span_name()

 View Source

 @type span_name() :: :listener | :acceptor | :connection

 Link to this type

 t()

 View Source

 @type t() :: %ThousandIsland.Telemetry{
 span_name: span_name(),
 start_metadata: metadata(),
 start_time: integer(),
 telemetry_span_context: reference()
}

 Functions

 Link to this function

 monotonic_time()

 View Source

 @spec monotonic_time() :: integer()

See System.monotonic_time/0.

ThousandIsland.Transport behaviour

This module describes the behaviour required for Thousand Island to interact
with low-level sockets. It is largely internal to Thousand Island, however users
are free to implement their own versions of this behaviour backed by whatever
underlying transport they choose. Such a module can be used in Thousand Island
by passing its name as the transport_module option when starting up a server,
as described in ThousandIsland.

 Summary

 Types

 address()

 A socket address

 listen_options()

 A listener socket options

 listener_socket()

 A listener socket used to wait for connections

 on_accept()

 The return value from an accept/1 call

 on_accept_ssl_error()

 on_accept_tcp_error()

 on_close()

 The return value from a close/1 call

 on_getopts()

 The return value from a getopts/2 call

 on_handshake()

 The return value from a handshake/1 call

 on_handshake_ssl_error()

 on_negotiated_protocol()

 The return value from a negotiated_protocol/1 call

 on_peercert()

 The return value from a peercert/1 call

 on_peername()

 The return value from a peername/1 call

 on_recv()

 The return value from a recv/3 call

 on_send()

 The return value from a send/2 call

 on_sendfile()

 The return value from a sendfile/4 call

 on_setopts()

 The return value from a setopts/2 call

 on_shutdown()

 The return value from a shutdown/2 call

 on_sockname()

 The return value from a sockname/1 call

 socket()

 A socket representing a client connection

 socket_get_options()

 Options which can be set on a socket via setopts/2 (or returned from getopts/1)

 socket_info()

 Information about an endpoint, either remote ('peer') or local

 socket_set_options()

 Options which can be set on a socket via setopts/2 (or returned from getopts/1)

 socket_stats()

 Connection statistics for a given socket

 way()

 The direction in which to shutdown a connection in advance of closing it

 Callbacks

 accept(listener_socket)

 Wait for a client connection on the given listener socket. This call blocks until
such a connection arrives, or an error occurs (such as the listener socket being
closed).

 close(arg1)

 Closes the given socket.

 controlling_process(socket, pid)

 Transfers ownership of the given socket to the given process. This will always
be called by the process which currently owns the socket.

 getopts(socket, socket_get_options)

 Gets the given options on the socket.

 getstat(socket)

 Returns stats about the connection on the socket.

 handshake(socket)

 Performs an initial handshake on a new client connection (such as that done
when negotiating an SSL connection). Transports which do not have such a
handshake can simply pass the socket through unchanged.

 listen(port_number, listen_options)

 Create and return a listener socket bound to the given port and configured per
the provided options.

 negotiated_protocol(socket)

 Returns the protocol negotiated as part of handshaking. Most typically this is via TLS'
ALPN or NPN extensions. If the underlying transport does not support protocol negotiation
(or if one was not negotiated), {:error, :protocol_not_negotiated} is returned

 peercert(socket)

 Returns the peer certificate for the given socket in the form of t:public_key.der_encoded().
If the socket is not secure, {:error, :not_secure} is returned.

 peername(socket)

 Returns information in the form of t:socket_info() about the remote end of the socket.

 recv(socket, num_bytes, timeout)

 Returns available bytes on the given socket. Up to num_bytes bytes will be
returned (0 can be passed in to get the next 'available' bytes, typically the
next packet). If insufficient bytes are available, the function can wait timeout
milliseconds for data to arrive.

 secure?()

 Returns whether or not this protocol is secure.

 send(socket, data)

 Sends the given data (specified as a binary or an IO list) on the given socket.

 sendfile(socket, filename, offset, length)

 Sends the contents of the given file based on the provided offset & length

 setopts(socket, socket_set_options)

 Sets the given options on the socket. Should disallow setting of options which
are not compatible with Thousand Island

 shutdown(socket, way)

 Shuts down the socket in the given direction.

 sockname(arg1)

 Returns information in the form of t:socket_info() about the local end of the socket.

 Types

 Link to this type

 address()

 View Source

 @type address() ::
 :inet.ip_address()
 | :inet.local_address()
 | {:local, binary()}
 | :unspec
 | {:undefined, any()}

A socket address

 Link to this type

 listen_options()

 View Source

 @type listen_options() ::
 [:inet.inet_backend() | :gen_tcp.listen_option()] | [:ssl.tls_server_option()]

A listener socket options

 Link to this type

 listener_socket()

 View Source

 @type listener_socket() :: :inet.socket() | :ssl.sslsocket()

A listener socket used to wait for connections

 Link to this type

 on_accept()

 View Source

 @type on_accept() ::
 {:ok, socket()} | {:error, on_accept_tcp_error() | on_accept_ssl_error()}

The return value from an accept/1 call

 Link to this type

 on_accept_ssl_error()

 View Source

 @type on_accept_ssl_error() :: :closed | :timeout | :ssl.error_alert()

 Link to this type

 on_accept_tcp_error()

 View Source

 @type on_accept_tcp_error() :: :closed | :system_limit | :inet.posix()

 Link to this type

 on_close()

 View Source

 @type on_close() :: :ok | {:error, any()}

The return value from a close/1 call

 Link to this type

 on_getopts()

 View Source

 @type on_getopts() :: {:ok, [:inet.socket_optval()]} | {:error, :inet.posix()}

The return value from a getopts/2 call

 Link to this type

 on_handshake()

 View Source

 @type on_handshake() ::
 {:ok, socket()} | {:ok, socket(), any()} | {:error, on_handshake_ssl_error()}

The return value from a handshake/1 call

 Link to this type

 on_handshake_ssl_error()

 View Source

 @type on_handshake_ssl_error() :: :closed | :timeout | :ssl.error_alert()

 Link to this type

 on_negotiated_protocol()

 View Source

 @type on_negotiated_protocol() ::
 {:ok, binary()} | {:error, :protocol_not_negotiated | :closed}

The return value from a negotiated_protocol/1 call

 Link to this type

 on_peercert()

 View Source

 @type on_peercert() :: {:ok, :public_key.der_encoded()} | {:error, reason :: any()}

The return value from a peercert/1 call

 Link to this type

 on_peername()

 View Source

 @type on_peername() :: {:ok, socket_info()} | {:error, :inet.posix()}

The return value from a peername/1 call

 Link to this type

 on_recv()

 View Source

 @type on_recv() :: {:ok, binary()} | {:error, :closed | :timeout | :inet.posix()}

The return value from a recv/3 call

 Link to this type

 on_send()

 View Source

 @type on_send() ::
 :ok | {:error, :closed | {:timeout, rest_data :: binary()} | :inet.posix()}

The return value from a send/2 call

 Link to this type

 on_sendfile()

 View Source

 @type on_sendfile() ::
 {:ok, non_neg_integer()}
 | {:error, :inet.posix() | :closed | :badarg | :not_owner | :eof}

The return value from a sendfile/4 call

 Link to this type

 on_setopts()

 View Source

 @type on_setopts() :: :ok | {:error, :inet.posix()}

The return value from a setopts/2 call

 Link to this type

 on_shutdown()

 View Source

 @type on_shutdown() :: :ok | {:error, :inet.posix()}

The return value from a shutdown/2 call

 Link to this type

 on_sockname()

 View Source

 @type on_sockname() :: {:ok, socket_info()} | {:error, :inet.posix()}

The return value from a sockname/1 call

 Link to this type

 socket()

 View Source

 @type socket() :: :inet.socket() | :ssl.sslsocket()

A socket representing a client connection

 Link to this type

 socket_get_options()

 View Source

 @type socket_get_options() :: [:inet.socket_getopt()]

Options which can be set on a socket via setopts/2 (or returned from getopts/1)

 Link to this type

 socket_info()

 View Source

 @type socket_info() ::
 {:inet.ip_address(), :inet.port_number()} | :inet.returned_non_ip_address()

Information about an endpoint, either remote ('peer') or local

 Link to this type

 socket_set_options()

 View Source

 @type socket_set_options() :: [:inet.socket_setopt()]

Options which can be set on a socket via setopts/2 (or returned from getopts/1)

 Link to this type

 socket_stats()

 View Source

 @type socket_stats() ::
 {:ok, [{:inet.stat_option(), integer()}]} | {:error, :inet.posix()}

Connection statistics for a given socket

 Link to this type

 way()

 View Source

 @type way() :: :read | :write | :read_write

The direction in which to shutdown a connection in advance of closing it

 Callbacks

 Link to this callback

 accept(listener_socket)

 View Source

 @callback accept(listener_socket()) :: on_accept()

Wait for a client connection on the given listener socket. This call blocks until
such a connection arrives, or an error occurs (such as the listener socket being
closed).

 Link to this callback

 close(arg1)

 View Source

 @callback close(socket() | listener_socket()) :: on_close()

Closes the given socket.

 Link to this callback

 controlling_process(socket, pid)

 View Source

 @callback controlling_process(socket(), pid()) ::
 :ok | {:error, :closed | :not_owner | :badarg | :inet.posix()}

Transfers ownership of the given socket to the given process. This will always
be called by the process which currently owns the socket.

 Link to this callback

 getopts(socket, socket_get_options)

 View Source

 @callback getopts(socket(), socket_get_options()) :: on_getopts()

Gets the given options on the socket.

 Link to this callback

 getstat(socket)

 View Source

 @callback getstat(socket()) :: socket_stats()

Returns stats about the connection on the socket.

 Link to this callback

 handshake(socket)

 View Source

 @callback handshake(socket()) :: on_handshake()

Performs an initial handshake on a new client connection (such as that done
when negotiating an SSL connection). Transports which do not have such a
handshake can simply pass the socket through unchanged.

 Link to this callback

 listen(port_number, listen_options)

 View Source

 @callback listen(:inet.port_number(), listen_options()) ::
 {:ok, listener_socket()} | {:error, any()}

Create and return a listener socket bound to the given port and configured per
the provided options.

 Link to this callback

 negotiated_protocol(socket)

 View Source

 @callback negotiated_protocol(socket()) :: on_negotiated_protocol()

Returns the protocol negotiated as part of handshaking. Most typically this is via TLS'
ALPN or NPN extensions. If the underlying transport does not support protocol negotiation
(or if one was not negotiated), {:error, :protocol_not_negotiated} is returned

 Link to this callback

 peercert(socket)

 View Source

 @callback peercert(socket()) :: on_peercert()

Returns the peer certificate for the given socket in the form of t:public_key.der_encoded().
If the socket is not secure, {:error, :not_secure} is returned.

 Link to this callback

 peername(socket)

 View Source

 @callback peername(socket()) :: on_peername()

Returns information in the form of t:socket_info() about the remote end of the socket.

 Link to this callback

 recv(socket, num_bytes, timeout)

 View Source

 @callback recv(socket(), num_bytes :: non_neg_integer(), timeout :: timeout()) ::
 on_recv()

Returns available bytes on the given socket. Up to num_bytes bytes will be
returned (0 can be passed in to get the next 'available' bytes, typically the
next packet). If insufficient bytes are available, the function can wait timeout
milliseconds for data to arrive.

 Link to this callback

 secure?()

 View Source

 @callback secure?() :: boolean()

Returns whether or not this protocol is secure.

 Link to this callback

 send(socket, data)

 View Source

 @callback send(socket(), data :: iodata()) :: on_send()

Sends the given data (specified as a binary or an IO list) on the given socket.

 Link to this callback

 sendfile(socket, filename, offset, length)

 View Source

 @callback sendfile(
 socket(),
 filename :: String.t(),
 offset :: non_neg_integer(),
 length :: non_neg_integer()
) :: on_sendfile()

Sends the contents of the given file based on the provided offset & length

 Link to this callback

 setopts(socket, socket_set_options)

 View Source

 @callback setopts(socket(), socket_set_options()) :: on_setopts()

Sets the given options on the socket. Should disallow setting of options which
are not compatible with Thousand Island

 Link to this callback

 shutdown(socket, way)

 View Source

 @callback shutdown(socket(), way()) :: on_shutdown()

Shuts down the socket in the given direction.

 Link to this callback

 sockname(arg1)

 View Source

 @callback sockname(socket() | listener_socket()) :: on_sockname()

Returns information in the form of t:socket_info() about the local end of the socket.

ThousandIsland.Transports.SSL

Defines a ThousandIsland.Transport implementation based on TCP SSL sockets
as provided by Erlang's :ssl module. For the most part, users of Thousand
Island will only ever need to deal with this module via transport_options
passed to ThousandIsland at startup time. A complete list of such options
is defined via the t::ssl.tls_server_option type. This list can be somewhat
difficult to decipher; by far the most common values to pass to this transport
are the following:
	keyfile: The path to a PEM encoded key to use for SSL
	certfile: The path to a PEM encoded cert to use for SSL
	ip: The IP to listen on. Can be specified as:	{1, 2, 3, 4} for IPv4 addresses
	{1, 2, 3, 4, 5, 6, 7, 8} for IPv6 addresses
	:loopback for local loopback
	:any for all interfaces (ie: 0.0.0.0)
	{:local, "/path/to/socket"} for a Unix domain socket. If this option is used, the port
option must be set to 0.

Unless overridden, this module uses the following default options:
backlog: 1024,
nodelay: true,
linger: {true, 30},
send_timeout: 30_000,
send_timeout_close: true,
reuseaddr: true
The following options are required for the proper operation of Thousand Island
and cannot be overridden:
mode: :binary,
active: false

 Summary

 Types

 listener_socket()

 options()

 socket()

 Types

 Link to this type

 listener_socket()

 View Source

 @type listener_socket() :: :ssl.sslsocket()

 Link to this type

 options()

 View Source

 @type options() :: [:ssl.tls_server_option()]

 Link to this type

 socket()

 View Source

 @type socket() :: :ssl.sslsocket()

ThousandIsland.Transports.TCP

Defines a ThousandIsland.Transport implementation based on clear TCP sockets
as provided by Erlang's :gen_tcp module. For the most part, users of Thousand
Island will only ever need to deal with this module via transport_options
passed to ThousandIsland at startup time. A complete list of such options
is defined via the t::gen_tcp.listen_option() type. This list can be somewhat
difficult to decipher; by far the most common value to pass to this transport
is the following:
	ip: The IP to listen on. Can be specified as:	{1, 2, 3, 4} for IPv4 addresses
	{1, 2, 3, 4, 5, 6, 7, 8} for IPv6 addresses
	:loopback for local loopback
	:any for all interfaces (i.e.: 0.0.0.0)
	{:local, "/path/to/socket"} for a Unix domain socket. If this option is used,
the port option must be set to 0

Unless overridden, this module uses the following default options:
backlog: 1024,
nodelay: true,
linger: {true, 30},
send_timeout: 30_000,
send_timeout_close: true,
reuseaddr: true
The following options are required for the proper operation of Thousand Island
and cannot be overridden:
mode: :binary,
active: false

 Summary

 Types

 listener_socket()

 options()

 socket()

 Types

 Link to this type

 listener_socket()

 View Source

 @type listener_socket() :: :inet.socket()

 Link to this type

 options()

 View Source

 @type options() :: [:gen_tcp.listen_option()]

 Link to this type

 socket()

 View Source

 @type socket() :: :inet.socket()

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

